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Coherence of condensed microcavity polaritons calculated within Boltzmann-Master equations
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The first-order spatial and the second-order temporal coherences of condensed microcavity polaritons are
calculated in terms of Boltzmann equations for the excited states and the ground state supplemented by a
Master equation for the probability to find a given number of particles in the condensate. The resulting
first-order spatial coherence agrees both in its pump power dependence and in its variation with distance with
the results of a recent double-slit experiment. Inserting the calculated rates between the excited states and the
condensate with various saturation and depletion models, we solve for stationary situations the Master equation
for the ground-state population. The resulting second-order correlations for the various models are compared

with recent measurements.
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I. INTRODUCTION

In recent years a nonequilibrium finite-size Bose-Einstein
condensation (BEC) has been observed in optically excited
semiconductor microstructures.'? In these structures the pho-
tons are confined by a microcavity (mc) with Bragg mirrors
on both sides, the photons are in resonance with excitons
confined in one or several quantum wells. The collective
excitations of these systems are polaritons. In particular the
lowest branch is well separated from the next-higher branch
by a gap which is larger than the damping of the polaritons
(strong-coupling case). The excited polaritons relax by pho-
non and particle-particle scattering to the ground state. At
sufficiently low temperatures and sufficiently strong pump-
ing a condensation in the ground state occurs which is di-
rectly observable in terms of an onset of laser action of the
lowest photon mode of the cavity. The ease of observation of
the condensation in terms of a connected laser emission gen-
erated also some doubts whether on can really speak about a
nonequilibrium BEC of polaritons or whether on has just
realized another exciton laser. Other observed features added
more and more evidence to the interpretation in terms of a
BEC. Examples are (i) the observation of a thermal, degen-
erate Bose-Einstein distribution of the excited polaritons® in
agreement with corresponding treatments of the polariton
kinetics,* (ii) the observation of a stable spin polarization of
the condensed state! as predicted by a quasispin kinetics,>®
and very importantly the direct observation of the Bogoliu-
bov spectrum in angle-resolved luminescence in new GaAs
mc’s with lifetimes as long as 80 ps.’

One of the most direct evidence of a macroscopic conden-
sate is the observation of coherence. First-order spatial co-
herence has been detected recently in a double-slit
experiment.® An early attempt to calculate the first-order spa-
tial correlation function is due to Sarchi and Savona.” With
their condensation kinetics they obtained relatively large
condensate densities which resulted in a too strong off-
diagonal long-range order.'” They incorporated many-body
effects using the Popov approximation in order to get a
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depletion of the condensate. We will later see that at least for
the GaAs mc’s with a 2 ps lifetime our kinetics yields con-
densate fractions which give the observed off-diagonal spa-
tial coherence,® which leaves not much space to larger deple-
tion effects.

The first-order temporal coherence function yields the
linewidth of the polariton laser light. Interestingly, the line-
width above threshold does not decrease according to the
Shallow-Townes formula but increases again'’'? with in-
creasing density of the polaritons in the ground state. This
observed effect can be calculated by Langevin equations for
the Bogoliubov model of weakly interacting bosons in terms
of an interaction of the polaritons in the ground state which
gives rise to a Kerr-effect-like behavior which in turns causes
the linewidth increase.

Another important test of the coherence properties of the
condensate is the temporal intensity-intensity correlation
function which has been of crucial importance for character-
izing the coherence properties of laser light. Measurements
of this function have already been performed by Deng et
al.'* for GaAs mc’s with 2 ps lifetime and recently for GaAs
mc’s with longer lifetimes (Ref. 15) and by Kasprazk et al.'®
in CdTe mc’s. A first attempt to explain these measurements
is due to Laussy et al.'® in terms of a coupled Boltzmann
equation and Master equation kinetics.

Here we will investigate in Sec. II to which extent the
observation of the spatial coherence in the 2 ps GaAs mc’s
can be explained in terms of a semiclassical Boltzmann ki-
netics taking into account both polariton-phonon and
polariton-polariton scatterings. In the following section we
will show that one can calculate directly the spatial variation
in the first-order coherence function and its dependence on
the pump power by using the distributions obtained from the
Boltzmann kinetics. We perform a detailed comparison with
the measured variations with pump power and distance in 2
ps GaAs-type mc’s.®

Using a stochastic extension of the Boltzmann kinetics,
we treat in Sec. III the coupled Boltzmann equations and the
Master equation for the probability to find n polaritons in the
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ground state. We include gain saturation and interactions
which deplete the condensate. For stationary situations we
solve the Master equation iteratively. The second-order cor-
relation function ¢ which can be calculated with the solu-
tions of the Master equation show for various saturation or
depletion models bunching of condensed polaritons above
threshold. The features of the calculated g® for the various
saturation or depletion models are compared with the mea-
sured ones in GaAs mc’s by Roumpos et al.'> In order to
explain the slow decay of correlations with increasing pump-
ing seen in GaAs mc’s (Ref. 15) and also in CdTe mc’s,'®
one has to include remarkably strong two-quantum scattering
processes as also observed recently by Schwendimann and
Quattropani.'”

II. FIRST-ORDER SPATIAL COHERENCE

In this section we recapitulate briefly the structure of the
Boltzmann condensation kinetics of the mc polaritons in the
lower branch. We mention again that we take the finite cross
section of the mc for the two-dimensional (2D) polaritons
into account. This finite geometry causes a gap in the energy
spectrum between the ground state and the first-excited
states. For this reason one obtains at finite temperatures a
finite-size  nonequilibrium  Bose-Einstein condensation
(BEC). For the relaxation Kinetics we take the polariton-
polariton (p-p) and the polariton-phonon (p-ph) interactions
into account. For details of the model and material param-
eters for the GaAs-type mc’s we refer to our earlier
publications.*?? The structure of the Boltzmann equations for
the distribution in the excited states n,(z) and in the ground
state ny(f) is

Jd ni Jd Jd
—np=Plt) - —+ —agl + gl (1)
Jt e 0t Tl Ot o
d n J J
—hp=-— _0 + _no _l’lo . (2)
ot To ot pp ot p-ph

Here, Pi(7) is the time-dependent pump rate and 7 is the
polariton lifetime. The p-p scattering rates have the basic
form

d
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p-p K ey ey
= ngng(1+ng)(1+np)], 3)

where 121:/2+c; and EZ:E’—cf. The polariton scattering rate
for emission and absorption of an acoustic phonon is

4 _ph
g == E W%g’g[nlg(l +ng; q)Nq,O'
Jat p-ph g.o=*1
= ni (L +np)N, _,], (4)

where the initial and final-state phonon numbers are N,
=Nq+%+‘2—', with the phonon Bose distribution Nq:M’
where S, is the inverse thermal lattice energy and v, is the
sound velocity. The transition probability is determined by
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FIG. 1. Calculated first-order coherence function g(l)(r) versus
normalized pump power P/ Py, for various distances r.

the deformation-potential coupling of an electron-hole pair to
the lattice. If we solve for a given pump pulse the Boltzmann
equations for n,(¢) and ny(z) about 20-30 ps after the excita-
tion pulse a local equilibrium distribution is established.* The
distribution over the excited states can be described by a
Bose Einstein distribution with a rather small degeneracy
parameter u/kT and a temperature close to the bath tempera-
ture. In the following we use all parameter of Ref. 4, in
particular we use a positive detuning of 4 meV and a cross
section of 100 um?. Both parameters are known to result in
a relatively fast condensation kinetics.

With these solutions we will now calculate the first-order
spatial coherence function defined as

UGG
(WD)
Inserting a plane-wave expansion

GE L—(zbo +X bke’"‘), (©)
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we find in the free-particle approximation

ny + 2;; nye )

g(l)(;l’;z) = . (7)
ng

With the calculated populations we can now evaluate the
pump power dependence of g'")(r=|r,—r,|) for various val-
ues of the distance r. The pump power P is normalized to the
threshold value Py,. One sees clearly from Fig. 1 how the
range of the spatial coherence increases above threshold.
These results are in excellent agreement of those measured
with a double-slit experiment by Deng et al.® shown in Fig.
2. As a next test we plot the distance dependence of gV(r) in
Fig. 3 for various values of the pump power. We see a more
or less exponential decay of the coherence function. The co-
herence length increases with pump power, i.e., with the de-
generacy of the condensed polaritons. In Fig. 4 we show
again the corresponding measurements of Ref. 8 which are
again in nearly quantitative agreement with the calculated
values of the coherence function.

Critically one should remark in this context that there is
some ambiguity in the modeling of the condensation kinetics
in 2D systems. In order to get a finite-size condensation in
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FIG. 2. (Color online) Measured first-order coherence function
g¢M(r) versus normalized pump power P/ Py, for various distances r
according to Deng ef al. (Ref. 8).

2D, one has to assume a finite cross section of the mc’s
which, however, is not known very well. It is often not given
by the geometry of the device, but by the spot size of the
exciting laser. A small cross section results in a large energy
gap between the ground state and the first-excited states, and
thus in a strong condensation with a large condensate den-
sity. In this respect we used the 100 um? cross section sim-
ply because our earlier experience showed us that with this
choice we get a rather good description of the condensation
kinetics in terms of the Boltzmann equation in the 2 ps GaAs
mc’s (Ref. 4) as mentioned above. It is too early to decide
whether a somewhat smaller cross section in combination
with a quantum kinetics—which would result some
depletion—is more appropriate. Because the interactions are
stronger in I[I-VI compound mc’s, this question is even more
urgent in these systems.’

III. INTENSITY-INTENSITY CORRELATION FUNCTION

In order to test the coherence properties of a polariton
condensate, one has to perform a Hanbury Brown-Twiss ex-
periment in which the correlations of the intensity I(z+7) at
time 7+ 7 and the intensity /(¢) at time ¢ are measured by the
second-order correlation function which is in its classical
form

(1 + DI(1))
Iz + 1))I(0))

The intensity of the polariton laser light is directly propor-
tional to the population of the ground state in which the

OE (8)

r (um)

FIG. 3. Calculated first-order coherence function g(')(r) versus
distances r for various normalized pump powers P/ Py,.
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FIG. 4. (Color online) Measured first-order coherence function
g"W(r) versus distances r for various normalized pump powers
P/ Py, according to Deng et al. (Ref. 8).

polaritons condense above threshold. The quantum-statistical
correlation function g is given by the correlations of the
condensate operators>

(BBt + Dbo(t + Tbo(1))
(bt + Dbt + D))bi(Db (1))
The mean condensate density (no(t))=<b$(t)b0(t)) is deter-

mined by a Boltzmann Eq. (2) which governs the scattering
kinetics in and out of the ground state

@ = (R, (D[ 1 + ny(£)]) = (Rou(t)no (1)) (10)

g?(n) = )

The rate in is given by the scattering processes from the
excited states to the ground state by polariton-polariton and
polariton-phonon scattering

_ p-p p-ph
Rin - E Wo,k;kl,k_kf(l + nk)nk’nk—k’ + E W(),qo'nqu,—o-

k' g,0=*1
(11)
The rate out is given by
! p-p
Rou[= —+ E WO,k;k’,k—k’nk(l + I’lk/)(l + nk—k')
0 k!
+ 2 whE(1+n,)N,_,. (12)
g,0=*1

As a comment we mention that formally one has exchange
rates due to the scattering process E, 0—0, k. These ex-
change rates do not give raise to changes in the populations
and thus should not be included in the kinetics. The mean
rate equation can thus be written as

Hoo)

o = Rin(OX[1 +no(D)]) = Rou)Nno(®)). (13)

Because one has to calculate for the second-order correlation
function second moments of the condensate population, we
need a stochastic extension of the kinetic equation for the
condensate. There are at least four formulations of such an
extension possible
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(A) One can supplement the Boltzmann equation for n,
by Langevin fluctuations with shot-noise character.'®! The
second density moments are then determined by the second
moments of these shot-noise fluctuations. As it is known
from laser theory, Langevin equations can be solved appro-
ximately by linearization below and above threshold, but
there is no simple way to find solutions in the whole density
regime.

(B) This is different for the associate Fokker-Planck equa-
tion in which the probability for a certain density value is
calculated. In stationary equilibrium, one gets an analytic
solution in terms of an exponential of a generalized
Ginzburg-Landau potential (see e.g., Risken?*). The change
in the potential from below threshold with a minimum at
no=0 to a potential with a sharp minimum at n,# 0 above
threshold describes the probabilities for all densities. In both
approaches, the Langevin and the Fokker-Planck method, the
density is considered to be a continuous variable which is
valid if ny>1. Because in a BEC the condensate density
varies from small values of ny<<1 below threshold to large
values above ny>1 this approximation is not well justified
below and at threshold where n,=0(1).

(C) The third possible stochastic extension of the ground-
state kinetics is the Master equation for the probability to
find n particles in this state. The Master equation takes the
discrete nature of the number of condensed particles exactly
into account.”> We thus adopt this approach which has been
considered before by Laussy et al.'® These authors calculated
g?(0) for CdTe mc’s (using only phonon-polariton and
electron-polariton scattering) from numerical solutions of the
time-dependent Master equation. In contrast, we will use a
well-converging detailed-balance and continued-fraction
methods for the solution of the stationary Master equation
and calculate the results for GaAs mc’s (using both ph-p and
p-p scattering) in order to be able to compare the results with
Yamamoto’s experiment.'4

A simplification to all three approaches is to limit the
treatment of fluctuations only for the condensate, but treat
the excited states simply by a mean equation, i.e., the Bolt-
zmann equation. We will discuss below the limitations of this
approach.

(D) Still another possibility is to treat the kinetics of the
second-order function <b$(t)b6(t)b0(t)b0(t)> in addition to the
kinetics of the densities. This approach has recently be ap-
plied by Schwendimann and Quattropani.'’

IV. MASTER EQUATION

We will now formulate the Master equation for the prob-
ability W, () to find at time # ny particles in the condensate.
With the generation and decay rate Gy, and D, respectively,

G,, = RL':)(nO +1) and D, = Rzgtno, (14)
we get the Master equation
aw,,
dt == (Gno + DnO)WnO + Dn0+1Wn0+1 + GnO—IWnO—l
mg=ng+1
= 2 My W, (15)
mg=ng—1

M, is a tridiagonal matrix.?* Its elements are

PHYSICAL REVIEW B 78, 205306 (2008)

Mno,no =- (Gno + Dno)’ Mno,n0+l = Dn0+l’ Mno,no—l = GnO—l .

(16)

The rate equation does not provide the full information
for the construction of the corresponding Master equation
because the transition rates are only known for {n,), but not
for arbitrary n=n,.> Systematically, one would have to de-
termine the populations of the excited states as a function of
the pump rate and the number of polaritons in the ground
state, as it can be done for a homogeneously broaden three-
level laser analytically. But, here we know the mean rates
from the solution of the Boltzmann equation only numeri-
cally. A simple procedure to include the gain saturation has
been formulated by Laussy et al.'® by expanding the distri-
butions of the excited states linearly n(ny)={n;)
+(dny/ dng)(ny—{ny)) in the deviation of the ground-state
population n, around its mean value {(ny). In order to avoid
confusions (n;), {ny) are the solutions of the Boltzmann
equations, called only n,, ny above. However, in the stochas-
tic extension of this kinetics, we have to make the distinction
between the mean values and the actual values. Estimating
the derivative, Laussy et al. get

d
(i) () _ () ’ (17)
(9]10 <"O> <}’lo> -N
where N is the total number of polaritons. This yields
no— (no>>
= 1+——. 18
(ni)(ng) <”k>< + (ng) - N (18)

One has to insert these excited-state populations with gain
saturation into the gain and decay rates known from the Bolt-
zmann equations. One sees that these correction terms of the
scattering rates in the Master equation vanish approximately,
if one calculates with the modified Master equation and with
(ngy=%, noW, the rate equation again. We will use these
corrections of the scattering rates in linear approximation.
Because for all excited states 1> (n;), the correction can be
neglected for the final-state factors 1+(n;). Thus the
polariton-phonon scattering rates Rﬁ;ph will get a correction
term with the factor F(ng)= ZZ;;S)V while the correction term
of polariton-polariton scattering rates in RP'P get the factor
2F(ng). In the rate out, only the polariton-polariton scattering
rates will be modified. The correction term RP? gets the fac-

out
tor F(ng), while the other rates remain unchanged.

A. Stationary solution

We consider stationary pumping. Once a stationary state
is reached, the rates in and out of the ground state do no
longer change with time but will naturally depend on the
pump strength. Thus we can treat the stationary Master equa-
tion.

B. Stationary solution obtained from detailed balance

The stationary solution is maintained if the rates between
two successive states balance. From Fig. 5 we see that the
following detailed-balance relation holds:
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FIG. 5. Level diagram for Master equation.

DnOWnO = GnO—IWnO—I ’ (19)
which yields the solution
Gn -1 =0 G
W, =——w, =[] = w,. (20)

W, is obtained from the normalization E,,OW%:L

C. Iterative solution in terms of continued fractions

In general, the stationary solutions are obtained from the
equation

my=ng+1
2 My Wi =0. (21)
mo=ngy—1
Introducing the ratio
W1
Sy = (22)
0 Wn
0
we find
Mno,no—l
Mno,no + Mno,n0+1Sn0 + S = 0’ (23)

ny=1
which yields the recurrence relation by changing ny— ng+1

M

notl,ng

S (24)

n,
0 7\4 } ]‘I S
no+1ng+l ng+1lng+29np+1

Equation (24) is well suited for numerical iteration. By ana-
Iytical iteration one gets the continued fractions for the ratio
S,. Finally, W, is given by

W,10=Sn0_lsn0_2 SQWO. (25)
The value of W, follows again from the normalization con-
dition. One can start the iteration at a value N>(n,) for
which one can put Wy, ;=Wy,,=...=0, so that Sy=0. Thus
one can calculate Sy_=—My y_1/ My y from Eq. (24), and so
on until we get Sj,.

V. SECOND-ORDER CORRELATION FUNCTION

The quantum-statistical second-order correlation function
for zero delay time is given in terms of field operators b, of
the condensate according to Eq. (9) by
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FIG. 6. Calculated distribution functions W, for various nor-
malized pump powers P/ Py,.
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Note that the field operators are in the normal form with all
creation operators to the right. In a n-diagonal number rep-
resentation of the density matrix p”o’”O:W”O in which n, are
natural numbers ranging from O to the total number of po-
laritons N, one gets

g?(0) =

N
El no(ng— I)Wno
N 2
(21 nOWno)

There are well-known limiting cases for ¢®(0): for a thermal
distribution W, = %exp[—ﬁ(EO— w)ng| with the normalization
constant Z, Eq. (26) yields g (0)=2. For a Poisson distribu-

_ {ng)"®

tion W, =1 exp({ny)) which holds in the coherent limit,
one gets g?(0)=1.

§?(0)= : (26)

VI. SOLUTIONS OF THE MASTER EQUATION

The stationary probability distributions obtained by itera-
tion are shown in Figs. 6 for three pump powers. Below
threshold, the distribution peaks at n=0 and decays mono-
tonically. Slightly above threshold, the distribution peaks at a
value (ny)>1 but is still rather broad. Well above threshold

20l —— with detailed balance
’ O without detailed balance
1.8F
—~ 16+
e
o 14}
1.2F
1.0F 000000000
0 1 2 3 4

FIG. 7. Calculated second-order coherence function g?(0) ver-
sus normalized pump power P/Py,. The circles give the detailed-
balance result.
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FIG. 8. Measured second-order coherence function g(z)(O) ver-
sus normalized pump power P/P, according to Deng et al. (Ref.
14) for 2 ps GaAs mc’s.

for P/ Py=4.1, the distribution peaks sharply around a larger
density value of about {n,)=10*. We checked that the solu-
tions obtained iteratively agree indeed with those obtained
from the detailed-balance condition.

Once all W, are calculated including the normalization
W,, one gets g@(0) from Eq. (26).

We see how the thermal limit with ¢?(0)=2 and the co-
herent limit with ¢®(0)=1 are smoothly connected. The
transition takes place in the region of pump powers P
=2Py. As will be discussed below this fast decay of the
correlations above threshold is not observed in the experi-
ments.

In Fig. 8 we show for comparison the measured g (0) of
Ref. 14 measured for 2 p GaAs mc’s. Below threshold the
average over the rapid fluctuations in the experiment falsifies
g so that it decreases below threshold. This can be under-
stood qualitatively, taking into account that g (7) varies ap-
proximately as g®(7)=2eRinRow7 a5 one can show, e.g., in a
Langevin approach. An average over the delay times yields
2>(0)xg?(0)/(Ryy—R;,). As the pump power decreases
away from threshold R,,—R;, increases. Thus the averaged
2,(0) decreases rapidly below threshold, as seen in the ex-
periment with the strongly fluctuating 2 ps GaAs mc’s.
Above threshold where the influence of time averaging is not
so strong, the measured correlations decrease only slowly. In
a more recent experiment with GaAs mc’s with a longer
cavity lifetime, a minimum of g®(P/Py,) seems to exist at
threshold, and the range of correlations above the coherent
limes extends over a much wider pump range.'> In these
experiments the strong influence of spectral and angle reso-
lution on the statistical properties of the ground-state emis-
sion has been shown. In similar measurements in CdTe
mc’s'® even an increase in g,(0) with pump power above
threshold has been found. It seems that other many-body
effects have to be included in order to account for the differ-
ence between these experimental findings and the theory.
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VII. SCATTERING OF TWO
CONDENSED POLARITONS

A. Nonresonant polariton-polariton scattering

One way to improve the g calculations is to include
two-quanta processes. Following an idea of Schwendimann
and Quattropani,'” one can consider a quadratic correction
term in the form of a scattering of two condensate polaritons
to the excited states with the momenta ¢ and —g. This pro-
cess is nonresonant, thus only with finite line width this scat-
tering to low-lying excited states can contribute. The transi-
tion rates of this process are

2 wWhh—no(ng = DA +n)(1 +n_,)
q

= (1 +no)(2+np)nn_,] (27)

with nyg—1=0. The energy-conserving delta function has to
be replaced by a Lorentzian or Gaussian resonance

2y
278(2eq—2e,) = ———— or
O T 2(eg—e )P+ ¥
N 26—4(30‘%)2/72. (28)

Y

This yields two-particle transition rates of the form

Gy = R™P(ng + 1)(ng+2)

(29)

with R =2 ywhp a—qlql—q
q

and

Dﬁo =R"@no(ny—1)

with R @ =X whb _ (1+n)(1+n,).  (30)
q

The last finite decay rate is D3=R*"*?)2, while D?=D}=0.
The simple reason is, one needs at least two polaritons in the
ground state for the considered quadratic scattering process
out of the ground state.

The two quadratic terms extend the three-diagonal to a
five-diagonal Master equation

dW"O (2) (2
dt == (GnO+Dn0 + Gno + DnO)WnO +Dn0+1Wn0+l

2 2
+ D1(10)+2Wn0+2 + GnO—IWnO—l + G( ) 2Wn0—2

1=
mgy=ng+2

= 2 Mno,mowmo' (3 1)

my=ngy—2

B. Kinetic saturation model for a dense condensate

It is known that 2D excitons eventually ionize once their
density is so high that the exciton wave functions start to
overlap.'3 The critical saturation density due to phase-space
filling has been evaluated from the reduction in the exciton
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FIG. 9. Calculated second-order coherence function g(z)(O)
versus normalized pump power P/Py for the nonresonant two-
polariton scattering.

oscillator strength to be nl= %WQ%D. This will also result in a

reduction in the exciton density n to ng/[1+(ny/n,)?]. In or-
der to incorporate the saturation effect kinetically in the Mas-
ter equation, we introduce phenomenologically a two-
polariton ionization rate. Due to the overlap of the wave
functions in a collision of two exciton polaritons, the two
polaritons are assumed to by ionized and thus lost for the
condensate

n

D’ = lno(no - l)ﬁ. (32)
0 70 ng
We have included a small numerical factor r, in order to
avoid an unphysically large ionization rate far below satura-
tion. We used the lifetime 7 to set the scale for the ionization
rate. Any direct back scattering from the ionization con-
tinuum to the condensate can be neglected.

Solution of a five-diagonal Master equation by iteration.
For the simultaneous presence of one and two-quanta transi-
tions detailed balance does no longer hold. The stationary
Master equation with two-quanta transitions

de m+2
d_O = E MnO,nO+m WnO+m =0 (3 3)
t m==2

will therefore be solved by an iteration procedure starting
with a highest nonzero value for Wy, i.e., all W,,=0 for all
no=N+1. Thus the Master equation for Wy, reads

My no>
My

Wy (34)

As shown in detail in the Appendix, we generate all W,
downward until we express W, and thus all higher W,,O by
Wy. W, is finally determined by the normalization. We show
the resulting second-order correlation functions both for the
ionization model and for the nonresonant two-polariton scat-
tering out of the condensate. In comparison with the results
of Schwendimann and Quattropani'” which are at least quali-
tatively in better agreement with the experiments, we find for
the nonresonant two-polariton scattering with reasonable col-
lision broadenings a less extended region of increased corre-
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FIG. 10. Calculated second-order coherence function g(z)(O)
versus normalized pump power P/Py for the kinetic saturation
model.

lations. Another difference is that they get a relative mini-
mum in the threshold region—at least in their model with an
exciton reservoir—which is not present in Fig. 9. In a recent
mean-field treatment?® of the polariton kinetics—similar as
ours—the minimum of g,(0) at threshold as a function of the
pump power is nearly absent, resembling in the respect more
our results. On the other hand, our treatment is not fully
self-consistent because we assumed that the corrections due
to the nonresonant quadratic interactions are small for the
solution of the mean Boltzmann equation. More importantly,
by treating only the ground-state population stochastically,
we miss correlations beyond the mean-field treatment be-
tween the ground state and excited states at k and —k, which
may be better accounted for in the treatment of Ref. 17.
Another possible effect which can only be obtained by a full
stochastic treatment of both the ground and the excited states
are relaxation oscillations which have been observed for la-
sers between the photon number and the populations of the
gain medium and which might exist also for condensed mc
polaritons.

As an attempt to increase the range of correlations within
our approach, we plot in Fig. 10 the results of the kinetic
saturation model. We see that with increasing interaction
strength r, the range of correlations where g =1 extends to
larger pumping rates as it is observed in the experiment. In
this general aspect the simple model brings the results closer
to those of the experiment than those of Fig. 7.

In conclusion, we have shown that the measured first-
order spatial correlations can be explained excellently by a
Boltzmann condensation kinetics. The observed large
second-order correlations above the coherent limit'#-1® have
been studied by combining the Boltzmann equation with the
Master equation for the number of condensed particles. Only
if a considerable—not fully understood—interaction between
the condensed particles is assumed, the experimental results
can be understood within our approach. The limitations of
treating only the ground-state population stochastically are
discussed.
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APPENDIX: ITERATIVE SOLUTION OF FIVE-DIAGONAL
MASTER EQUATION

The stationary Master equation with two-quanta transi-
tions

de m+2
0 _ —
" —Ez My s Wogom =0 (A1)

will be solved by an iteration procedure starting with a high-
est nonzero value for Wy, i.e., all W,,O=O for all ny=N+1.
Thus the Master equation for W) reads

Wy=ayWy_i + byWy_»

with the coefficients

Myn- Myn-o
ClN ==, bN == .
My y My y
o . L AWy
Substituting this result into —, —=0, one gets

Wi = an i Wi + by Wiz
with the coefficients

My_y nby+ My_i yoo

aN-1 =~ ’
My_y yay+ My_y y-
b = My_1 N3
N-1= .
My_y yay+ My_j n-y
. . . dWy_
Next we substitute this result into d: 2=0, and find

Wy =ay oWz + by, Wy

with the coefficients
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My_y yan+ My_p n_1by-1 + My_p n3

a2 =— ,
My_o yay+ My yo1an-y + My nby+ My_y no
and
b = My_oN-4
N-2 =~

My_pnay+ My o n-1an-1 + My o nby+ My oo
Continuing with this iteration, one finds in general

Wn = aan—l + ann_z.
with the coefficients

Mn,n+2an+2 + Mn,n+lbn+l + Mn,n—l

an == £
Mn,n+2an+2 + Mn,n+1an+l + Mn,n+2bn+2 + Mn,n

b o=— Mn,n—Z

n b
Mn,n+2an+2 + Mn,n+1an+1 + Mn,n+2bn+2 + Mn,n

which is the form obtained for ay_,, by_, if one replaces
N-2 by n. One continues the iteration until one gets

to %:0 with the solution W;=a,;W, because b;=0. With

W,=c,W,, one finds c¢;=a; and from
Wr=coWo=a,Wi+ bWy, cr=asc;+by,

or in general

Wy=c,Wo=a,W,.1+b,W, 5, c¢,=a,c,_1+b,c, 2,
up until n=N. W, finally is obtained from the normalization
Wo+ Wi+ ... + Wy + Wy=1,
from which one gets

1

WO= .
1+C1+C2+ oot ey

With this relation all probabilities W, are determined
uniquely.
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